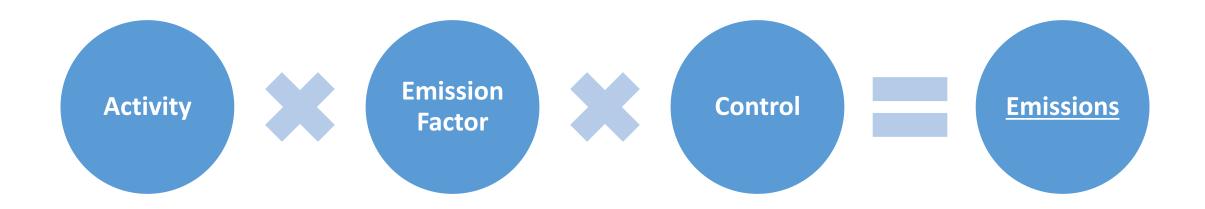
VOC Emission Calculations

Ivonne Hernandez - Air Quality Division

Mecklenburg County Land Use and Environmental Services Agency



 $\mathcal{L}_{SM} = -\frac{1}{2} \partial_{\nu} g_{\mu}^{a} \partial_{\nu} g_{\mu}^{a} - g_{s} f^{abc} \partial_{\mu} g_{\nu}^{a} g_{\mu}^{b} g_{\nu}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{ade} g_{\mu}^{b} g_{\nu}^{c} g_{\mu}^{d} g_{\nu}^{e} - \partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} M^2W_{\mu}^+W_{\mu}^- - \frac{1}{2}\partial_{\nu}Z_{\mu}^0\partial_{\nu}Z_{\mu}^0 - \frac{1}{2c^2}M^2Z_{\mu}^0Z_{\mu}^0 - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-) - igc_w(\partial_{\nu}Z_{\mu}^0(W_{\mu}^+W_{\nu}^- - W_{\nu}^+W_{\mu}^-))$ $Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}))-igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}))-igs_{w}(\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})))$ $(W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W$ $\frac{1}{3}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{3}g^2W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + g^2c_w^2(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) +$ $g^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\nu^- - A_\mu A_\mu W_\nu^+ W_\nu^-) + g^2 s_w c_w (A_\mu Z_\nu^0 (W_\mu^+ W_\nu^- - W_\nu^+ W_\mu^-) - W_\nu^+ W_\mu^-)$ $2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}$) $-\frac{1}{3}\partial_{\mu}H\partial_{\mu}H - 2M^{2}\alpha_{h}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{3}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} \beta_h \left(\frac{2M^2}{g^2} + \frac{2M}{g}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-) \right) + \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - g\alpha_h M \left(H^3 + H\phi^0\phi^0 + 2H\phi^+\phi^- \right) - \frac{2M^4}{g^2}\alpha_h - \frac{2M^4}{g$ $\frac{1}{8}g^{2}\alpha_{h}\left(H^{4}+(\phi^{0})^{4}+4(\phi^{+}\phi^{-})^{2}+4(\phi^{0})^{2}\phi^{+}\phi^{-}+4H^{2}\phi^{+}\phi^{-}+2(\phi^{0})^{2}H^{2}\right)-gMW_{\mu}^{+}W_{\mu}^{-}H \frac{1}{2}g^{M}_{r^{2}}Z^{0}_{\mu}Z^{0}_{\mu}H - \frac{1}{2}ig\left(W^{+}_{\mu}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})\right) +$ $\frac{1}{2}g\left(W_{\mu}^{+}(H\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}H) + W_{\mu}^{-}(H\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}H)\right) + \frac{1}{2}g\frac{1}{c_{-}}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0} - \phi^{0}\partial_{\mu}H) +$ $M\left(\frac{1}{c_{w}}Z_{\mu}^{0}\partial_{\mu}\phi^{0} + W_{\mu}^{+}\partial_{\mu}\phi^{-} + W_{\mu}^{-}\partial_{\mu}\phi^{+}\right) - ig\frac{s_{w}^{2}}{c_{w}}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+})$ $W_{\mu}^{-}\phi^{+}$) $-ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+})+igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}\phi^{+}) \frac{1}{4}g^2W_{\mu}^+W_{\mu}^-\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)-\frac{1}{8}g^2\frac{1}{c^2}Z_{\mu}^0Z_{\mu}^0\left(H^2+(\phi^0)^2+2(2s_w^2-1)^2\phi^+\phi^-\right)-\frac{1}{8}g^2W_{\mu}^+W_{\mu}^-\left(H^2+(\phi^0)^2+2\phi^+\phi^-\right)$ $\frac{1}{2}g^2\frac{s_w^2}{c_w}Z_{\mu}^0\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^+) - \frac{1}{2}ig^2\frac{s_w^2}{c_w}Z_{\mu}^0H(W_{\mu}^+\phi^- - W_{\mu}^-\phi^+) + \frac{1}{2}g^2s_wA_{\mu}\phi^0(W_{\mu}^+\phi^- + W_{\mu}^-\phi^-) + \frac{1}{2}g^2s_$ $W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - g^{2}\frac{s_{w}}{c_{w}}(2c_{w}^{2} - 1)Z_{\mu}^{0}A_{\mu}\phi^{+}\phi^{-} - g^{2}s_{w}^{2}A_{\mu}A_{\mu}\phi^{+}\phi^{-} + g^{2}s_{w}^{2}A_{\mu}\phi^{-} + g$ $\frac{1}{2}ig_s\,\lambda^a_{ij}(\bar{q}^\sigma_i\gamma^\mu q^\sigma_j)g^a_\mu - \bar{e}^\lambda(\gamma\partial + m^\lambda_e)e^\lambda - \bar{\nu}^\lambda(\gamma\partial + m^\lambda_\nu)\nu^\lambda - \bar{u}^\lambda_j(\gamma\partial + m^\lambda_u)u^\lambda_j - \bar{d}^\lambda_j(\gamma\partial + m^\lambda_d)d^\lambda_j + \bar{e}^\lambda_i(\gamma\partial + m^\lambda$ $igs_wA_\mu\left(-(\bar{e}^\lambda\gamma^\mu e^\lambda)+\tfrac{2}{3}(\bar{u}_j^\lambda\gamma^\mu u_j^\lambda)-\tfrac{1}{3}(\bar{d}_j^\lambda\gamma^\mu d_j^\lambda)\right)+\tfrac{ig}{4c_w}Z_\mu^0\{(\bar{\nu}^\lambda\gamma^\mu(1+\gamma^5)\nu^\lambda)+(\bar{e}^\lambda\gamma^\mu(4s_w^2-1)^2)\}$ $(1-\gamma^5)e^{\lambda}$) + $(\bar{d}_i^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2-1-\gamma^5)\bar{d}_i^{\lambda})$ + $(\bar{u}_i^{\lambda}\gamma^{\mu}(1-\frac{8}{3}s_w^2+\gamma^5)u_i^{\lambda})$ } + $\frac{ig}{2\sqrt{2}}W_{\mu}^{+}\left((\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})U^{lep}_{\lambda\kappa}e^{\kappa})+(\bar{u}_{j}^{\lambda}\gamma^{\mu}(1+\gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})\right)+$ $\frac{iq}{2\sqrt{2}}W_{\mu}^{-}\left(\left(\bar{e}^{\kappa}U^{lep\dagger}_{\kappa\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}\right)+\left(\bar{d}_{j}^{\kappa}C_{\kappa\lambda}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda}\right)\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{+}\left(-m_{e}^{\kappa}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1-\gamma^{5})e^{\kappa})+m_{\nu}^{\lambda}(\bar{\nu}^{\lambda}U^{lep}_{\lambda\kappa}(1+\gamma^{5})e^{\kappa}\right)+$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_{e}^{\lambda}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1+\gamma^{5})\nu^{\kappa})-m_{\nu}^{\kappa}(\bar{e}^{\lambda}U^{lep}_{\lambda\kappa}^{\dagger}(1-\gamma^{5})\nu^{\kappa}\right)-\frac{g}{2}\frac{m_{\nu}^{\lambda}}{M}H(\bar{\nu}^{\lambda}\nu^{\lambda}) \frac{g}{2}\frac{m_{\phi}^{\lambda}}{M}H(\bar{e}^{\lambda}e^{\lambda}) + \frac{ig}{2}\frac{m_{\phi}^{\lambda}}{M}\phi^{0}(\bar{\nu}^{\lambda}\gamma^{5}\nu^{\lambda}) - \frac{ig}{2}\frac{m_{\phi}^{\lambda}}{M}\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda}) - \frac{1}{4}\bar{\nu}_{\lambda}M_{\lambda\kappa}^{R}(1-\gamma_{5})\hat{\nu}_{\kappa} \frac{1}{4} \overline{\nu_{\lambda}} M_{\lambda \kappa}^{R} (1 - \gamma_{5}) \dot{\nu_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa} \right) + \frac{ig}{4} \overline{\nu_{\lambda}} M_{\lambda \kappa}^{R} (1 - \gamma_{5}) \dot{\nu_{\kappa}} + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa} \right) + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + \frac{ig}{2M\sqrt{2}} \phi^{+} \left(-m_{d}^{\kappa} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 - \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) + m_{u}^{\lambda} (\bar{u}_{j}^{\lambda} C_{\lambda \kappa} (1 + \gamma^{5}) d_{j}^{\kappa}) \right) \right)$ $\frac{ig}{2M\sqrt{2}}\phi^{-}\left(m_d^{\lambda}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^5)u_j^{\kappa})-m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}\right)-\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda})-\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda})+\frac{g}{2}\frac$ $\frac{ig}{2}\frac{m_{\alpha}^{\lambda}}{M}\phi^{0}(\bar{u}_{i}^{\lambda}\gamma^{5}u_{i}^{\lambda}) - \frac{ig}{2}\frac{m_{\alpha}^{\lambda}}{M}\phi^{0}(\bar{d}_{i}^{\lambda}\gamma^{5}d_{i}^{\lambda})$

Emissions General Formula

VOC's

Coatings

Mixing Application Curing

Solvents

Agitation Cleaning Reclaiming

Chemical

Blending Packaging

Fueling

Refining Storage Distribution

Mass Balance Method

What do I need?

List of the materials used and/or applied (Maybe SDS)

Actual Annual Usage

VOC Content by weight % or lbs/gal

Control Efficiency

Different Equations Depending on Units

Pounds

Amount of Material Used (lb)

%VOC in the Material

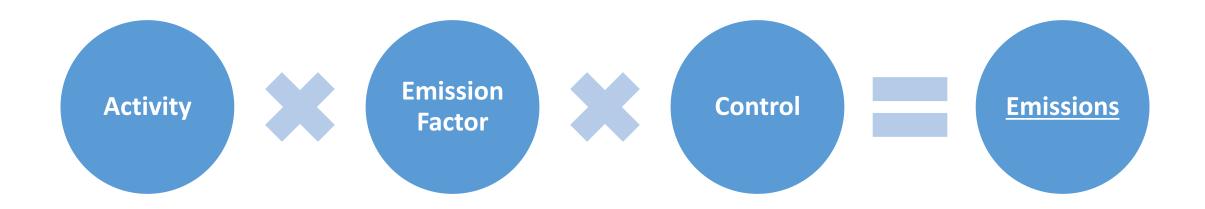
VOC Emisssions in lb

Gallons

Amount of Material Used (gal)

Lb/gal of VOC in the Material

VOC Emisssions in lb


MECKLENBURG COUNTY

Incorporating a Control Device

Emissions General Formula

EXAMPLE A: usage in pounds and VOC content in %

Material	Lb used	% VOC in	Emission(lb)	Control Efficiency	After control
CoatingWhite	500	55	275	95	13.75
CoatingBlack	200	45	90	95	4.50
	TOTAL		365		18.25

Pounds of material used per year X VOC content (% by wt) = Pounds of VOC emitted per year

EXAMPLE B: usage in gallons and VOC content in lb/gal

Material	Gal used	Lb/gal VOC	Emission(lb)	Control Efficiency	After control
		111 1/100-1101		(/*)	Emission (10)
CoatingBlue	60	5.75	345.60	95	17.28
Coating Yellow	30	5.45	97.50	95	4.88
	TOTAL		443.10		22.16

Gallons of material used per year X VOC content (lb/gal) = Pounds of VOC emitted per year

Safety Data Sheet

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical States: [] Gas [X] Liquid [] Solid

Appearance and Odor: Water White / Free and Clear

Melting Point: No data.

Boiling Point: 318.00 F - 385.00 F

Autoignition Pt: No data.

Flash Pt: > 100.00 F

Explosive Limits: LEL: 0.5 UEL: 6

Specific Gravity (Water = 1): 0.78

Vapor Pressure (vs. Air or 0.3 MM HG at 68.0 F

mm Hg):

Vapor Density (vs. Air = 1): 5 Air = 1 Evaporation Rate: No data. Solubility in Water: No data.

Solubility Notes: Very slightly soluble in cold water.

Percent Volatile: 100.0 % by weight.

VOC / Volume: 778.0000 G/L

EXAMPLE C: conversions needed for VOC content

Material	VOC in Material	Density or Specific Gravity (SG)	y or Specific Gravity (SG) Convert to			
CoatingGreen ¹	4.5 lb/gal	Density = 9.4 lb/gal	%	48 %		
CoatingGreen ²	48 %	Density = 9.4 lb/gal	lb/gal	4.5 lb/gal		
Coating Green ³	40.76	90 1.13	10/ga1	4.5 10/gal		

¹VOC content given in lb/gal ÷ Density of material (lb/gal) = VOC content in %

²VOC content given in % X Density of material (lb/gal) = VOC content in lb/gal

³Specific gravity is the ratio of the density of a compound to the density of water, which is 8.34 lbs/gal.

VOC content given in % X SG X 8.34 = VOC content in lb/gal

ANNUAL VOC, TOXIC AND HAZARDOUS AIR POLLUTANT EMISSION CALCULATOR Mass Balance Method (Rev. 03/2015)

(User INPUT = Values in Red)

	Annua	Annual Usage		Unit	Uncontrolled Emissions		Control Eff.	Controlled Emissions	
TAP and/or	Actual	Unit	VOC/HA P/TAP	(wt.% or lb/gal)	Actual		(%)	Actual	
HAP!	a, (1)	b, (2)	C	d, (2)	е	f	g, (3)	h, (4)	tons/yr i
	20,000	gal							
			4	lb/gal	80000	40	95	4000	2
T, H			1	lb/gal	20000	10	95	1000	0.5
T,H			0.5	lb/gal	10000	5	95	500	0.25
	5,000	lb							
			20	%	1000	0.5	90	100	0.05
T,H			10	%	500	0.25	90	50	0.025
otal VOC					80,000	40.5		4100	2.05
Total Xylene Total Benzene					10,500 20.000	5.25 10		550 1000	0.275 0.5
	T, H T,H T,H Otal VOC	TAP Actual HAP? (Unit/yr) a, (1) 20,000 T, H T,H 5,000 T,H otal VOC al Xylene	TAP and/or HAP? Actual Unit	TAP and/or HAP? Actual Unit P/TAP Content	TAP and/or HAP? Actual Unit P/TAP Ib/gal) Content	TAP and/or HAP? Actual Unit U	Annual Usage	Annual Usage	TAP and/or HAP? Actual Unit P/TAP Content Unit Unit

ALL OF THEM!

EQUATIONS:				Notes:											
e = a x c	for lb/gal			(1) Please provide documentation for how actual (or potential) usage values were calculated											
e = a x c / 100	for wt.%			(2) If usage is reported in pounds, VOC/HAP/TAP content must be provided in % by weight; If usage is reported in gallor									allons,		
f = e / 2000														accordingly	/
$h = e - (e \times (g/100))$			(3) Please provide information about capture efficiency and documentation for how control efficiency was												
i = h/ 2000			determined. Attach information about retention factors and/or any assumptions made where applicable.												
				(4) Use these actual emission numbers to compare to TPERs in MCAPCO Regulation 1.5711.											
				(5) For ea	ch coating	input a, l	o, c, & g ac	cordingly.							

Calculating VOC's - Spreadsheets

VOC and Air Toxics from Coatings

Gasoline Terminals

Stage 1 Gasoline Dispensing

MECKLENBURG COUNTY

Questions?

Ivonne.Hernandez@MecklenburgCountyNC.gov

980-314-3369

